Forecasting in the face of ecological complexity:

Number and strength of species interactions determine forecast
skill in ecological communities
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RESEARCH QUESTIONS

* Does the forecasting of species abundances depend.:

. . - C ,)
consequences of climate change, 1. On the number of interactions a species has”

biodiversity loss, etc. 2. On the mean strength of these interactions?

. . — Forecast skill vs. complexity within system
 The complexity of ecological systems

might render ecology unpredictable* - Does an increase in complexity decrease how well

. we can forecast species abundances?
 Studies both support? and refutes that P

complexity hinders forecast skill — Forecast skill vs. complexity across systems

« Complexity within a system varies as well:
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=+ Microcosms: tri-trophic microbial communities in 2L bottles » Time series: detrended and standardized .
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GE) » Treatment: 1 constant and 3 fluctuating temperatures (Fig. 1) Q + Forecast error of abundances determined with three
.= — The fluctuating temperatures complexify the system > methods: EDM, ARIMA & RNN
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Q. Replicates: 9 at constant and 3 at each fluctuating temperature é * Number of interactions: estimated with CCM EDM
W« Sampling: 3 times per week (Mo, We, Fr) for 22 weeks * Interaction strengths: estimated with S-map EDM & MARSS
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Within the system, complexity improved forecasting (Fig. 2 SR | Inivarci
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» To forecast abundances equally well different amounts of data are required for different species ' Sclence Foundation
Increased system complexity decreased the forecast skill of some species (Fig. 3) See the publication in
Ecology Letters!
* The effect of complexity can be species-specific and of different sign within and across systems CONTACT N
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